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Abstract

We present a method to reconstruct a disordered network of thin biopolymers, such as collagen gels, from three-
dimensional (3D) image stacks recorded with a confocal microscope. The method is based on a template matching
algorithm that simultaneously performs a binarization and skeletonization of the network. The size and intensity pattern of
the template is automatically adapted to the input data so that the method is scale invariant and generic. Furthermore, the
template matching threshold is iteratively optimized to ensure that the final skeletonized network obeys a universal
property of voxelized random line networks, namely, solid-phase voxels have most likely three solid-phase neighbors in a
3|3|3 neighborhood. This optimization criterion makes our method free of user-defined parameters and the output
exceptionally robust against imaging noise.
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Introduction

Many biological materials, such as the cytoskeleton or the

extracellular matrix, self-organize into complex networks by the

polymerization of protein molecules into fibrils (Fig. 1). If the

thickness of the fibrils is negligible compared to the pore size, the

resulting structure can be mathematically described as a

disordered line network. In general, the functional properties of

these networks, such as their mechanical stiffness on the

macroscopic scale, or their permeability for diffusing particles

and for actively migrating cells on a microscopic scale, depend on

the geometrical details of the microscopic network structure. In

order to study the relationship between structure and function, it is

therefore important to extract, or reconstruct, the 3D network

structure from image stacks. One aspect of the reconstruction is

the binarization of the intensity values of the image stack, so that

each voxel is assigned one of two possible values, corresponding

either to the solid phase (1, collagen fibers) or the liquid phase (0,

surrounding medium). Another aspect of the reconstruction is the

skeletonization, so that the optically broadened fibers are reduced

to their central (medial) axis, with a width of only one voxel.

While most of the standard reconstruction methods carry out

the binarization and skeletonization in a two-step process, our

template matching method achieves this in a single step. This new

method avoids the problem of choosing an arbitrary intensity

threshold for the binarization. Instead, the template matching

algorithm automatically adapts the mismatching threshold to the

input data such that within the reconstructed fraction of solid-

phase voxels the most probable number of next neighbors equals

three. This represents a universal property of voxelized line

networks.

Criteria for Reconstruction Methods
We define the following criteria for our reconstruction method:

The method needs to be (1) free of user-adjustable parameters, (2)

be insensitive to variations in the input data quality and (3) be able

to correctly reconstruct known networks. We have applied our

method to collagen networks imaged under a wide range of

different confocal microscope settings, such as different amplifier

gain and laser outlet power. Furthermore, we generated synthetic

data sets, with statistical properties almost indistinguishable from

measured data but with the advantage that the underlying line

network is exactly known.

Existing Reconstruction Methods
Most of the existing reconstruction methods work with two

separate steps of binarization and skeletonization [1–6]. The

simplest way to binarize an image stack is by comparing each

individual voxel’s intensity with a threshold value h and to assign

all voxels that are brighter than h to the solid phase. This method

naturally leads to binarized arrays with many artifacts, which need

to be corrected in a subsequent step. This correction step includes

the simple removal of isolated solid-phase voxels that result from

noise. More demanding is the skeletonization which requires the

thinning of the broadened binarized fibers to their medial axis of

one voxel diameter. Binarization can also lead to the disruption of

fibers, so that closing methods, consisting of dilatation with

subsequent erosion steps [7,8], have to be applied as well. Various

image processing methods based on convolution kernels, such as

Gaussian smoothing filters, Laplace filters or Sobel operators [7,8]

are sometimes used to improve the data quality. However, these

methods do not solve the fundamental problem of binarization

and suffer from artifacts that have to be removed afterwards.
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Another widely used method is template matching [9–11],

which uses a-priori knowledge of the type of object to be found.

Hence, it is possible to compute the degree of similarity between a

subvolume of the input stack and a matching template, which is

more selective than local or global thresholding with absolute

voxel intensities.

Finally, learning algorithms such as vector clustering methods

[12] or neural networks [13] have been applied to the

reconstruction problem. A significant advantage of these methods

is their ability to automatically adapt to the specific properties of

the input data. Our proposed template matching algorithm

belongs to the class of learning algorithms, since the template is

automatically generated from the input data.

Limitations of Existing Methods
A detailed summary and comparison of all reconstruction

methods is beyond the scope of this paper. Instead, we shall briefly

consider the simple example of global threshold binarization and

discuss some of its fundamental shortcomings. This will be useful

to highlight the advantages of the template matching method

proposed later.

We start with an image stack recorded by confocal reflection

microscopy. Let us assume that the intensities of the image stack

are coded with 8 bits, i.e. all brightness values B are in the range

[0,255], with B = 0 corresponding to completely dark (black) and

B = 255 to maximum bright (white) voxels. In our setup (Leica

SP5X confocal microscope in reflection mode), a typical distribu-

tion p(B) of brightness values has a sharp peak around B = 1565

and a flat tail towards large values (Fig. 2A). The reasonable range

of binarization thresholds h is located somewhere within this tail.

However, the distribution p(B) itself offers no hint for choosing the

optimum threshold.

To characterize different network reconstruction methods, we

use artificially generated image stacks. This requires realistic

models for the network and for its transformation into cross-

sectional images by the microscope. As described in more detail in

Methods, we use a ‘‘Mikado’’ model for the line network, where

straight lines of fixed lengths and isotropic orientations are

homogeneously distributed throughout the volume [14]. To model

the imaging process, we take into account the broadening of fibers

(simulated by a convolution with a point spread function), the

blind spot effect of confocal reflection microscopy (a gradual

darkening of steep fibers) [15] and the addition of random noise.

The resulting image stacks have statistical properties almost

indistinguishable from measured image stacks (Fig. 2), but with the

advantage that the underlying mathematical line network is

precisely known.

To perfectly reconstruct the original line network using global

threshold binarization the existence of a threshold h is required,

such that all fluid phase voxels have a brightness below this

threshold and all solid phase voxels have a brightness above this

threshold. However, when we use our synthetic image stacks and

plot the brightness distributions of the two phases separately, we

find in general two peaks with a significant overlap (Fig. 3). This

means that no global threshold can be found, even in principle, for

separating the two phases, without also producing some false

positive and false negative voxels.

Figure 1. Small 3D stack of a collagen gel. Dimensions
(20|20|10)mm3, collagen concentration 1.2 mg/ml. (A) Raw data, as
recorded with confocal reflection microscopy, without any image
processing. The lateral (x-, y-direction) resolution of the fibers is
considerably better than the vertical (z-direction) resolution, due to the
anisotropic point spread function. In addition, only fiber segments that
run in small angles to the imaging plane are visible, due to the so-called
blind spot effect. Moreover, the speckled appearance of the collagen
network is an optical artifact of reflection microscopy; confocal images
of fluorescently labeled collagen networks reveal continuous line
networks [16]. (B) Corresponding reconstruction result, using the
algorithm described in this paper. Note that voxels that appear to be
missing in the reconstruction are located outside of the selected sub
volume.
doi:10.1371/journal.pone.0036575.g001

Figure 2. Statistical properties of a real and a surrogate image stacks. (A) Comparison of the voxel intensity distributions in the real and
surrogate image stacks. Both distributions are similar. (B) and (C) show angular distributions of the fiber segments. (B) Typical distributions of
azimuthal angles q in a real and a surrogate data set. The distributions are almost indistinguishable. The peaks are a result of voxelization. The
principal directions, corresponding to the x- and y-direction, as well as the principal diagonals are over-represented in short fiber segments and lead
to maxima at q~0,+ p

4
,+ p

2
,+ 3p

4
,+p: (C) Typical distributions of polar angles q in a real and a surrogate data set. Again, the distributions are similar.

Compared to an ideal isotropic network with p(q)! sin (q), polar angles smaller than p
2

are increasingly suppressed due to the blind spot effect of
confocal reflection microscopy [15].
doi:10.1371/journal.pone.0036575.g002

Fiber Reconstruction from Confocal Image Stacks
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The voxels with brightnesses in the overlap interval include, for

example, isolated bright points due to noise. It would be relatively

easy to remove them in a subsequent post-processing step. More

problematic is that the overlap interval also includes liquid phase

voxels from the narrow gaps between two fibers that have been

raised in brightness beyond the threshold by the superposition of

the fibers’ point spread functions. This effect would lead to a

merging of the two close-by fibers in the binarized image and

would require a much more sophisticated procedure to be

repaired. Finally, the overlap region includes voxels of fiber

segments that are more vertically oriented, and are therefore too

dark, to exceed the threshold, because of the blind spot effect of

confocal reflection microscopy [15]. We note that a human

observer could still recognize some of the darker fiber segments in

the overlap region quite easily.

Taken together, the threshold binarization has some funda-

mental limitations. To a certain extent, the method can be

improved by using variable thresholds, which take into account the

local brightness conditions in the environment of each voxel to be

binarized. This, however, can already be viewed as a first step

towards a template matching method that will be discussed in the

following.

Template Matching in Line Networks
Template matching methods recognize specific image parts

within larger image stacks by comparing features, e.g. the

brightness patterns, of small sub volumes of the stack with one

or a set of templates. Several recent papers report the tracing of

line-like structures, such as actin filaments [9] or microtubuli

[10,11], using 3D template matching. For this purpose, a cylinder

segment is varied with respect to size and orientation, resulting in a

large set of 3D templates (for example, 850 different orientations in

Ref. [11]). In the case of input data with high resolution, due to the

large size and number of required templates, this leads to long

computation times.

However, the situation is much simpler when only 2D cross-

sections are used for the template matching: The vertical cross-

section of a broadened line segment with a plane is a elliptical spot

of finite size that can be easily recognized by 2D template

matching (see marking A in Fig. 4). The shape of the spot will vary

as the angle of intersection becomes less than 90 degrees. For

angles less than 45 degrees, the distortion of the spot can become

too large to match the template (see marking B in Fig. 4), but in

this case the same line segment can be easily recognized by its

intersection with a perpendicular plane. Therefore, all line

segments (solid voxels) can be detected by sequentially scanning

through the x-, y- and z-direction of the sample volume. As shown

below, this binarization method turns out to be much more

reliable and robust than the simple threshold method.

We note that this method meets the design criteria imposed

before. In order to eliminate all user-adjustable parameters (1), we

have implemented an automatic template generator, that is

entirely based on the input data. We demonstrate in Results that

our method is also robust with respect to the quality of the input

data (2) and reproduces synthetic line networks almost perfectly

(3).

Methods

The following section outlines the basic methods used in the

process of network reconstruction (see also the flow chart in Fig. 5).

A more detailed description of the algorithm is available as a

preprint: arXiv:1111.3861. In addition, a C++ implementation of

the algorithm and a sample data set are freely available at http://

tiny.cc/2012-Krauss-PlosOne-Prog.

Fiber Detection Process
Our method scans through the 3D image stack in x-, y- and z-

direction and identifies regions that likely represent sections

through a fiber.

Note that our method is generic and applicable to arbitrary

network structures and imaging methods. In this report, we focus

on collagen gels recorded by confocal reflection microscopy, which

does not require fluorescent staining, but leads to a so-called blind

spot effect: the apparent brightness of fibers decreases with their

angle relative to the imaging plane, leaving all fibers beyond a

critical cut-off angle invisible [15]. In this case, it is sufficient to

scan only in x- and y-direction.

In the following we focus on the scan in the x-direction. The x-

scan can be imagined by a y-z-plane (the search plane) that moves

through the 3D image stack. The algorithm detects sections of

fibers with the search plane by comparing small 2D Nx|Ny-

Figure 3. Voxel intensity distributions of the solid and the fluid
phase. The two distributions show a wide overlap. No global threshold
can be found, even in principle, for separating the two phases, without
also producing some false positive and false negative voxels.
doi:10.1371/journal.pone.0036575.g003

Figure 4. x-z cross-section of a 3D image stack. (A) Perpendicular
cross-sections of collagen fibers appear as elliptical spots of finite size
that can be easily recognized by 2D template matching. (B) The shape
of the spot varies as the angle of intersection becomes less than 90
degrees. For angles less than 45 degrees, the distortion of the spot can
become too large to match the template.
doi:10.1371/journal.pone.0036575.g004

Fiber Reconstruction from Confocal Image Stacks
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Figure 5. Flow chart of the reconstruction algorithm. The method involves three independent 2D scans through the 3D image stack, along the
x-, y- and z-directions. Since these scans are analogous, the diagram focuses on the x-scan only.
doi:10.1371/journal.pone.0036575.g005

Fiber Reconstruction from Confocal Image Stacks
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regions of the search plane (the search sections) with a predefined

template (Fig. 6) of the same size Nx|Ny. The automatic

generation of this template and the optimum choice of its size will

be described below. The template, as well as the search sections,

are represented as vectors with Nx
:Ny components that corre-

spond to the intensities of the pixels. From all vector components,

the global mean intensity of the 3D image stack is subtracted.

Finally, all vectors are normalized to magnitude 1 to become

independent from absolute intensities. To quantify the mismatch

between search section and template we use the Euclidean

distance of the corresponding vectors. If this distance exceeds a

predefined mismatching threshold (for details see below), the

central pixel of the corresponding search section is set to 0 (fluid

phase). After this operation, the search plane contains in general

numerous localized clusters of solid phase pixels, corresponding to

cross sections of individual fibers. Within these clusters, local

minima of mismatch (representing the medial axis of fiber cross

sections) are determined and set to 1 (solid phase), while all others

are set to 0. Analogous scans are performed through the y- and (in

case of confocal fluorescence microscopy) z-directions. The binary

image stacks resulting from each scan are combined using a logical

OR-operation, yielding the final reconstruction result.

Automatic Template Generation
The template for each scan direction is generated by weighted

averaging over a large amount (&105) of randomly chosen 2D

sections throughout the 3D image stack (Fig. 7). The weighting

coefficient of each 2D section is proportional to the intensity of its

central pixel. This weighting mechanism assures that only sections

that contain a bright fiber at the center contribute significantly to

the average. The resulting template represents a typical cross

section of a fiber with a bright core and darker borders (Fig. 6).

Due to the subtraction of the global mean intensity from each

vector component (see above), core pixels are positive, while

border pixels are negative. This change of sign is used to

automatically adjust the template size (Fig. 8). Due to the

automatic size adaption, the algorithm becomes scale invariant

with respect to the input data and independent from the optical

resolution of the recorded line networks.

Adjusting the Mismatching Threshold
The choice of the mismatching threshold determines the

fraction of voxels labeled as solid phase. For a value that is too

low, the reconstructed fibers are disrupted, while a value that is too

high leads to thick (not completely skeletonized) fibers. The degree

of skeletonization in a voxelized line network can be quantified by

counting the number Ndsn of direct solid neighbor voxels to each

solid voxel. By evaluating a large number of voxelized random line

networks we determined the distribution function p(Ndsn): While

p(Ndsn) depends slightly on the network density, we find, as a

universal property, that p(Ndsn) is maximum at N
(max)
dsn ~3: This

universal property N
(max)
dsn ~3 is used to find the optimum value for

the mismatching threshold. Our particular choice of Ndsn is only

valid for line networks, however, and Ndsn needs to be adjusted in

the case of other porous structures to preserve their topology after

skeletonization. Needless to say, this requires a-priori knowledge of

the network topology.

Generation of Surrogate Data Sets
For testing the algorithm, we created idealized line networks

using a ‘‘Mikado’’ model. Straight lines of fixed lengths and

isotropic orientations are distributed with a homogeneous density

throughout the volume [14]. Binary surrogate data sets are derived

from these parameterized networks by a voxelization operation.

We numerically blur these binary data sets to simulate the imaging

process and obtain artificial image stacks with gradual intensities.

The blurring corresponds to a convolution with an anisotropic

Gaussian, representing the point spread function of the imaging

system (In the case of confocal reflection microscopy, the gradual

darkening of steep fibers with respect to the imaging plane, the so-

called blind spot effect, was simulated as well). Uncorrelated image

noise was simulated by adding a Gaussian-distributed random

value to each voxel intensity. The resulting synthetic image stacks

show statistical properties almost identical to measured image

stacks (Fig. 2) but with the advantage that the underlying network

structure is exactly known.

Distribution of Nearest Obstacle Distances
Relevant geometric properties of line networks, such as their

pore size, are useful parameters to estimate the similarity between

different networks. The pore size of a network can be quantified in

different ways, for instance by placing within each pore a sphere of

the maximum possible size and then analyzing the size distribution

of these spheres [16]. In this report we compute the distribution

p(rno) of nearest obstacle distances in the binarized network. This

is done by selecting a set of random test points within the stack,

computing the distance from each test point to its closest solid state

obstacle (i.e. fiber segment) and then finding the distribution of

these distances [14,17].

Results

In the following sections, we first discuss how voxelization effects

may affect subsequent evaluations. Second, we objectively evaluate

the accuracy of the reconstruction results by comparing the

statistical properties of the original and reconstructed stacks, based

on synthetic networks with a known structure. Third, we

quantitatively test the robustness of the algorithm with respect to

input data quality. Fourth, we demonstrate that our algorithm is

invariant with respect to the scale, or resolution, of the input

images. Finally, we discuss the computational complexity of the

algorithm, its performance on single core computers, and the

possibility of parallelization.

Figure 6. Matching template. Example for an automatically
generated matching template in the x-z plane. The blurring is largest
in the z direction.
doi:10.1371/journal.pone.0036575.g006

Fiber Reconstruction from Confocal Image Stacks
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Reconstructed Fiber Networks
The template matching algorithm reduces the optically blurred

images of fibers to contiguous voxel chains of binary value 1 (Fig. 1,

see also animation at http://tiny.cc/2012-Krauss-PlosOne-Mov).

Within the discrete binary output stack, a fiber that follows a

smooth curve in continuous space can only be represented as a

wiggling trace of voxels (Fig. 9). This voxelization artifact has no

significant effect on the pore size distribution of the line network,

however, the analysis of other quantities, such as the local

curvature of the fibers, would require further post-processing steps

in order to fit smooth space curves through the discrete voxel

chains. Alternatively, our template matching algorithm could be

extended to sub-voxel accuracy: Once the discrete pixel has been

determined in which a fiber intersects a given plane, the detailed

sub-pixel position of the fiber’s medial axis in the plane could be

found in a second step. This could be achieved, for example, by

computing the center of intensity for a small 3D environment

around the central voxel.

Correct Reconstruction of Synthetic Networks
The algorithm’s ability to correctly reconstruct random fiber

networks was evaluated using surrogate data sets. We generated a

set of 100 surrogate image stacks that differed widely in their

network densities, point spread functions and noise levels. The

quality of the reconstructed networks was evaluated quantitatively

by comparing the distributions of nearest obstacle distances in the

underlying binary surrogate and in the reconstructed data sets

(Fig. 10). The correlation coefficient of corresponding distributions

ranged from 0.87 to 0.99, with an average of 0.93.

Insensitivity to Variations in the Input Data Quality
We performed two tests to evaluate the sensitivity of the

algorithm towards variations in the image quality. First, the laser

power was kept constant at 3 mW (wavelength 488 nm), while the

gain of the photomultiplier tubes was changed over a range of

100 V, corresponding to an intensity variation by a factor of 3.6

(Fig. 11A). Second, the gain was kept constant at a value that gave

optimal images for a laser power of 3 mW, while the laser power

was varied from 0.6 mW to 5.5 mW, corresponding to an intensity

variation by a factor of 5 (Fig. 11B). We find that our binarization

algorithm is largely independent of the imaging parameters and

the resulting differences in the image quality.

Scale invariant Reconstruction
Since the templates are adaptively generated from the input

data, the algorithm is scale invariant. In order to test this, we

recorded the same collagen gel with low resolution (25662566286

voxels of size 600.6 nm6600.6 nm6168 nm), medium resolution

(51265126512 voxels of size 300.2 nm6300.2 nm6293.7 nm)

and with high resolution (10246102461000 voxels of size

150.2 nm6150.2 nm6167.8 nm). The three input stacks were

reconstructed and for each binarized stack the distribution of

Figure 7. Adaptive template generation. Random sub-sections (yellow window) are selected from the 2D slices of the input stack. They are
weighted with the intensity of the central pixel (right side) and then averaged to obtain a representative template for fiber cross sections.
doi:10.1371/journal.pone.0036575.g007

Figure 8. Automatic adaption of template size. After subtracting
the mean intensity from each template pixel, the borders of the pattern
can be identified by their negative values. Thus, the template can be
adjusted to an optimal size. Due to this feature, the algorithm is scale
invariant.
doi:10.1371/journal.pone.0036575.g008

Figure 9. Voxelized representation of collagen fibers. The figure
shows three adjacent original confocal images (left) and the corre-
sponding reconstruction result (right). The broadened fiber is reduced
to a wiggly, continuous line with a ‘diameter’ of one voxel.
doi:10.1371/journal.pone.0036575.g009

Fiber Reconstruction from Confocal Image Stacks
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nearest obstacle distances was determined. We found almost

identical distributions for the low and medium resolution (Fig. 12).

For the highest resolution, the average pore size was slightly

smaller because finer structures of the network can be resolved.

This trend was confirmed by repeating the experiment with two

other gels, including also a dense gel with higher collagen

concentration (data not shown).

Complexity and Performance of the Algorithm
By design, the execution time of our algorithm scales linearly

with the total number of voxels in the stack. In C++, the

reconstruction of a typical stack (512|512|512 voxels) takes less

than 4 minutes on a single core desktop PC, which is an acceptable

time for most research labs and is less than the time needed to

perform the confocal microscopy measurements. This execution

time is to be compared to that of other reconstruction methods,

such as [9] (about 1 day for a 1024610246512 stack), or [10]

(about 70 min. for a 52862566544 stack, using 54 parallel CPUs).

Furthermore, as another advantage of a 2D approach, it would be

straight forward to parallelize the algorithm: Since it involves only

planar pattern averaging and pattern matching operations, these

operations could be performed independently and simultaneously

for all the 2D slices in the stack.

Discussion

In this paper we presented a new method to reconstruct fiber

networks from noisy and blurred confocal image stacks. The

method is based on template matching across 2D sections of the

sample volume, rather than attempting to match 3D fiber

segments. Since the algorithm is self-adapting to the specific

properties and variable quality of the input image stacks, it does

not require any user-defined parameters. In particular, the

mismatching threshold is automatically adjusted until the skele-

tonized fibers have the expected ‘‘line-like’’ property, such that the

most probable number of solid phase neighbors to a solid phase

voxel equals 3. In addition, the templates are derived from the

input data, and the template size is automatically adjusted to the

image resolution, so that the method is scale invariant. As a result

of the self-adapting properties, the method is robust with respect to

imperfections in the confocal image stacks due to varying intensity

levels, poor signal-to noise ratio, or strong anisotropic blurring.

Finally, we have confirmed the accuracy, robustness and scale

invariance of the algorithm using synthetic and real confocal

image stacks in which we varied the network geometry, image

resolution and image quality over a wide range.

Figure 11. Insensitivity of the algorithm to variations in the input data quality. The algorithm produces stable results over a wide range of
photomultiplier gain (A) and laser outlet power (B). Note that the data in (A) and (B) correspond to two collagen gels that have been fabricated under
identical conditions. The slight differences in the observed pore sizes reflect sample-to-sample fluctuations.
doi:10.1371/journal.pone.0036575.g011

Figure 12. Test of scale invariance. The same collagen gel has been
recorded with three different optical resolutions (relative voxel sizes:
high/medium/low & 1/2/4). After reconstructing the three image
stacks, the distribution of nearest obstacle distances were computed.
The low and medium resolutions give similar results. Only at the highest
resolution, the pores appear slightly smaller on average, because under
these conditions even fine details of the network can be resolved.
doi:10.1371/journal.pone.0036575.g012

Figure 10. Statistical test of reconstruction quality. We
determined the distributions of nearest obstacle distances in a binary
surrogate data set and the corresponding reconstruction result. Both
distributions are identical, disregarding statistical fluctuations.
doi:10.1371/journal.pone.0036575.g010

Fiber Reconstruction from Confocal Image Stacks
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